
Confidential Page 1 6/9/2003

This document is specially prepared for Sun MicroSystem. 1

XML on a Chip?
XimpleWare

Introduction

XML (Extensible Markup Language) is a text-based semi-structured data/document
format standardized by W3C in 1998 as the foundation for next-generation Internet
applications. Since then XML was applied extensively to areas such as EAI, B2B,
middleware, database and content management and has shown enormous amount of
promise in enabling new applications as well as solving problems associated with
older generations of proprietary technologies. However, many challenges remain that
hinder the widespread adoption of XML. Problems such as processing model and
performance are technical ones and finding solutions to them probably requires,
more than anything else, technical innovation and engineering creativity. Although
the concept of using custom hardware to improve performance is hardly new, one
has to be very careful about the idea of processing XML in hardware. The devil is in
the details: DOM/SAX processing models have many problems that prevent them
from being implemented in hardware. The goal of this paper is threefold: (1) to
examine root causes of XML performance issues in general and DOM’s memory issue
(2) to investigate the feasibility of moving XML processing on chip (3) to outline
properties as well as potential applications of XimpleWare’s patent-pending
technology.

Technical Challenges of XML Processing

XML has several favorable attributes that distinguish it from other competing
technologies. Programmers find XML easy to learn because it is human-readable. The
downside, however, is that an XML document needs to be parsed for it to become
machine-readable. Existing parsing libraries, such as Crimson and Xerces, don’t offer
very good performance even on a top-of-the-line general-purpose processor. Various
research papers and publicly available benchmarks have shown that performance of
XML middleware applications lags behind proprietary middleware, such as CORBA
and RMI, by orders of magnitude.

Also programmers working with XML often face the dilemma of picking the right
processing model. Generally people like DOM (Document Object Model) because it
offers a tree view of the XML document and is a natural and easy way to work with
XML. But DOM is slow and quite resource intensive, making it unsuitable for most
high performance applications. SAX (Simple API for XML) is faster and consumes less
memory, but doesn’t provide much structural information of an XML document. As a
result, programmers using SAX often have to manually maintain the state
information, which can be quite slow and tedious for a complex XML document. In
light of those issues, XML luminary James Clark, in a recent interview, points out that
one of the challenges for XML is to "Improve XML processing models. Right now,
developers are generally caught between the inefficiencies of DOM and the unfamiliar
feel of SAX. An API that offers the best of both is needed."

Confidential Page 2 6/9/2003

This document is specially prepared for Sun MicroSystem. 2

Why is DOM resource intensive?

Current XML parsing inherits heavily from traditional text processing techniques
invented decades ago for compiler design purposes, which have relatively low
performance requirement because once an application has been compiled, it can run
standalone without compiler. Also DOM is originally designed for HTML rendering in a
web browser, which also isn’t performance critical. In an environment where a
constant stream of XML documents needs to be processed real-time, performance
becomes a far greater concern. DOM is slow in a large part because it is resource
intensive. A couple of factors contribute to DOM’s memory inefficiency:

 Overhead of allocating small memory blocks
The operating system uses a segment of process address space called "heap" for
the purpose of dynamic memory allocation. To do that, OS pre-divides heap into
linked lists of small fixed-size free memory blocks, also known as buckets. Any
request for a small memory block will be assigned by OS a smallest pre-allocated
block in the bucket that the fits the size of the request. For instance, a request to
allocate a single-byte returns a 16-byte chunk (an 8-byte memory block plus 8
byte for boundary tags). When the OS has to allocate lots of small memory
blocks, the overhead can become very significant.

 Unnecessary de-coupling between a node object and its name
A node object is a small memory block containing a pointer to the node name in
the form of a string object, which is another small block. The binding between
node object and node name plays right into the weakness of the OS: It is like the
overhead of small memory blocks isn’t bad enough – DOM "knowingly" creates as
many small blocks as possible to take advantage of the "overhead."

Limitation of General-purpose Processor Architecture

Normally, when people talk about general-purpose processors, they think of features
that make a piece of fabricated silicon programmable to solve any computing task.
One of them is the "sequential execution model" where a general-purpose processor
does the computation by sequencing through a set of operations in time, that is, one
at a time. Modern microprocessors also incorporate deep pipelines so multiple
instructions can be assigned to different stages of the pipeline to improve
computation throughput. A good example is Intel's Pentium 4, with its deep 20-stage
pipeline. Moreover, modern microprocessors often employ a hierarchy of SRAM-
based cache memory in order to bridge the performances gap between registers and
main memory.

Nevertheless, XML parsing belongs to a class of computation tasks that doesn’t
benefit from those features; therefore, its performance usually isn’t satisfactory. All
those tasks have low data dependency and require same basic operations to be
executed repeatedly on large amount of data. For them, a general-purpose
architecture is not able to take advantage of the inherent parallelism because of its
sequential nature. Failing to recognize such concurrency also has unwelcome
consequences on the accuracy of branch prediction, especially with a deep-pipeline.
Suppose the branch prediction unit makes a bad prediction and the CPU was just
about to process the data in the last stage of the pipeline, it now has to flush the
entire pipeline and start over again, losing valuable clock cycles in the process. Also

Confidential Page 3 6/9/2003

This document is specially prepared for Sun MicroSystem. 3

the memory hierarchy doesn’t completely eliminate main memory access, which can
cost over a hundred cycles in the latest Pentium IV processors.

XML on a chip: Does it make sense?
The answer is yes. Only done properly, though.

As such, XML parsing is a special case of layer-7 processing whose on-chip
implementation allows concurrent operations to be executed in parallel with
maximum efficiency. A parallel architecture also obviates the need for branch
prediction, as the execution becomes deterministic. With the resulting improvement
in efficiency, the custom hardware can achieve staggering performance gain when
running at only a fraction of the clock frequency of a general-purpose
microprocessor. A lower clock speed also closes the performance gap between on-
chip memory and main memory, eliminating the penalty of cache-miss.

In the meantime, one has to be aware of the constraints and limitations of custom
hardware when thinking of hardware-based XML parsing. It almost goes without
saying that hardware will generate lots of bits that will be interpreted by application
logic. Still, many questions remain. Any sensible technology should at least provide
satisfactory answers to the following questions:

 Do these bits lose meanings after being transferred into system main
memory?
Usually the custom hardware owns its own memory space, which is separate
from the system main memory. This presents a big problem that disqualifies
hardware implementation of many software-based algorithms: pointers lose their
meanings when transported into separate address spaces. Notice that the same
principle governs the inner workings of IPC (Inter-Process Communication) and
RPC. Passing pointers among threads, on the other hand, is one notable
exception because threads share the same heap.

 How (easy) does the application logic interpret these bits to achieve the
purpose of parsing?
This is a critical question in the context of XML, since it isn’t as obvious as SSL
acceleration where the input and output of the acceleration are easy to
understand. Also it touches on the most difficult aspect of the design
architecture. Ideally, APIs built on top should offer usability, performance and
flexibility so applications can unleash the power of XML to the fullest extent.

 What is the impact of the acceleration to the overall performance?
A good design should strive to accelerate as much of the task as possible.
Suppose a design accelerates only 10% of the overall task by a factor of 1000,
the overall performance gain is only a paltry 11%, essentially rendering the
acceleration meaningless.

DOM on a chip
Because of its power and flexibility, DOM is a primary candidate for hardware
acceleration. Yet there are several reasons, in our view, that make “DOM on a chip”
difficult to realize:

Confidential Page 4 6/9/2003

This document is specially prepared for Sun MicroSystem. 4

 Custom hardware can’t build hierarchical data structure.
Building a DOM tree requires OS’ sophisticated memory allocation and
management capabilities, as any part of DOM, such as DOM nodes and strings, is
dynamically allocated at run time. In contrast, custom hardware manages
memory statically—in other words; custom hardware dump bits into memory as if
the memory is a large contiguous array, making it ill suited for building a DOM
tree.

 Hierarchical data structure can’t be directly transported across the
memory boundary.
DOM’s nodes are stitched together through the heavy use of pointers, which can’t
be transported across the memory boundary directly. A bad work-around
requires a re-serialization of the data structure. Applications at the receiving end
will have to perform parsing all over again, essentially defeating the purpose of
high performance hardware parsing.

 Prohibitive difficulties of physical to virtual memory mapping
Because custom hardware works exclusively with physical addresses, even one
manages to transport DOM tree into the main memory, he/she still has to face
the impossible mission of mapping the data structure into virtual memory
address of the heap. Aside from the improbable task for manipulating page
tables, the mapping also requires that selected locations on the heap be
unoccupied. Considering the dynamic nature of heap, this is simply too much to
ask for.

DOM’s memory inefficiency also has negative performance implications. Suppose a
1000x performance increase in building DOM is achievable, the cost of garbage
collection, at around 10%~20% of CPU time of building a DOM tree, can put a cap
on the overall performance gain. Therefore, whenever possible, one should attempt
to optimize garbage collection as well.

SAX on a chip
As a lesser candidate for acceleration, SAX on a chip faces the following technical
challenges:

 Lack of separation between parsing routine and application logic
Using SAX requires the application logic to communicate constantly with the
parsing routine. When the SAX parser is replaced by custom hardware, the
application logic becomes the weakest link that ties up the hardware and
prevents it from accelerating other XML parsing tasks in a multi-threaded
environment. The desirable behavior should be that custom hardware quickly
processes one XML document, then move on to the next.

 Overhead of device driver calls
The callback nature of SAX parsing could force applications to make frequent and
expensive device driver calls. As a result, any performance gain from the
hardware acceleration would inevitably be offset by the overhead of the device
calls.

 Intermediate format approach
Alternatively, one can choose to let custom hardware generate intermediate
format, then build SAX on top. But the problem is that it diminishes SAX’s ability

Confidential Page 5 6/9/2003

This document is specially prepared for Sun MicroSystem. 5

to process very large files, which is one of SAX’s greatest strengths and a reason
why it is invented in the first place. In other words, the “intermediate format“
approach makes no sense unless it is DOM-like.

Aside from the above technical challenges, one has to beware of SAX’s inherent
usability issues. SAX parsing, with the overhead of object creation and tracking the
state information, often isn’t the most processing-intensive part of an application. In
many cases, such as Apache AXIS, people claim to use SAX, but what actually
happens underneath is that they are forced to construct in-memory data structure,
which results in DOM-like performance and memory consumption. So accelerating
SAX doesn’t help much in boosting the overall performance.

All things considered, SAX on a chip doesn’t solve the most critical problem.

XimpleWare’s Solution

Problem Statement
Despite its promises, XML has many issues that need to be addressed before it can
fulfill the potential as the foundation for next generation Web applications. As an
example, poor performance of XML processing can force enterprises to either delay
the rollout of XML applications or buy a lot more hardware to meet the scalability
requirement. In addition, as the XML traffic in the network grows, the necessities to
classify, route and secure XML data at wire-speed all point to the need for a high
performance XML processing engine, which is very different from either network
processors based on general-purpose architecture or layer-7 chips doing simple
pattern-matching. Furthermore, performance and resource inefficiencies of current
XML processing techniques have so far stymied industry-wide transitions to XML-
enabled transaction-capable databases.

However, given their respective flaws and limitations, brute-force approaches to port
existing XML processing models on chip are difficult to realize.

Technology Overview
All those lead to the significance of XimpleWare’s patent-pending technology. The
best way to describe XimpleWare’s invention is that it is two birds one stone: the
only viable means to port XML on chip happens to be the most memory-efficient as
well. What’s more, it possesses many interesting properties that overcome hidden
shortcomings of existing processing models. We have sufficient reasons to believe
that XimpleWare’s technology will not only strongly influence how XML is used across
many areas of applications, but also enable many XML applications previously
thought impossible. In short, it will have a profound impact and far-reaching
implications on the future of the XML revolution.

The starting point of XimpleWare’s technology is a new XML processing model. By
maintaining the entire document in memory, it gives a complete structural view of
the document without incurring DOM’s resource overhead. Unlike DOM or SAX, it
requires that the original XML document be kept intact in memory. To traverse the
data structure, an application navigates the intermediate format, which can be
generated blinding fast by custom hardware. Moreover, the processing model allows

Confidential Page 6 6/9/2003

This document is specially prepared for Sun MicroSystem. 6

validation and XPATH to be implemented on chip as well. The properties of the
processing model can be summarized as follows:

 General purpose
The processing model and its ensuing advantages/properties apply to any XML
document.

 High performance
The processing model allows the intermediate format to be generated using
custom hardware. Our chip running at 200MHz generates the intermediate format
at 200MB/sec, outperforming DOM-building with 2GHz PIV by 100 times. What’s
more, the cost of garbage collection has been dramatically reduced as well. Its
direct comparison with DOM again shows how poorly designed DOM is. In other
words, no matter what the application logic does, DOM incurs the round-trip cost
of tree construction and destruction, which XimpleWare’s processing model
bypasses altogether.

 Low memory usage
If we have had a good enough discussion on DOM’s memory inefficiency issue so
far, it should become clear that picking apart the original XML document, which
adheres to traditional text processing techniques, makes no sense! Going around
it is one of the fundamental reasons why XimpleWare technology is able to
reduce memory usage by 5x.

 Language/Platform neutral and Standard Compliant
The processing model doesn’t make any assumptions on the type of
programming languages or architectures; therefore, any languages or platforms
can implement APIs on top of the intermediate format as long as it conforms to
the specification. XimpleWare plans to offer APIs compliant to XPATH/XQUERY
specifications in addition to data-binding support and a DOM-like native API

 Inherent Persistence
Alluding to the previous discussion on the limitation of custom hardware, one
probably won’t be surprised by the fact that the intermediate format is inherently
persistent. This opens up two possibilities:(1) One can persist the intermediate
format on disk along with the original XML document so that no parsing needs to
be done when the application loads both the XML document and the intermediate
format. (2) One can build the XML intermediary that generates the intermediate
format and attaches it to the original XML data to dramatically speed up the
performance of application servers at the receiving end. In other words, external
XML offloading becomes a reality!

 Fast serialization performance for remove, modify and insert
When applications only make minor changes to XML documents, both DOM and
SAX incur the round-trip cost of taking apart the XML document then putting it
back. XimpleWare’s processing model avoids that cost as it allows the XML
document to be manipulated like a piece of buffer. For example, it allows one to
extract out any element node in its serialized form. Imagine a B-2-B application
has to return, as a response, an XML invoice document that includes the large
portion of the incoming XML-based purchase order, one can literally grab the
intended elements from the PO and drop it into the invoice—a tremendous gain in
serialization performance.

Confidential Page 7 6/9/2003

This document is specially prepared for Sun MicroSystem. 7

 Validation and XPATH
Often considered critical in a real-time transactional environment, DTD or
Schema based validation can significantly slow down XML parsing performance.
When ported on chip, validation is done in parallel with the parsing, therefore
incurs no extra latency. Our processing model also enables hardware
implementation of XPATH.

Areas of Applications
Because XimpleWare’s technology accelerates XML at the lowest layer, we expect it
to enable a diverse range of XML applications. Below is an incomplete list of possible
areas:

 XML databases /Content Management
Our processing model coupled with the hardware acceleration is capable of
dramatically boosting the XML database performance. Because of the persistent
nature of the intermediate format and low overall memory footprint, when read
into memory, the intermediate format allows the database server to query much
bigger XML documents without the expensive parsing. Modifications to XML
documents also become much more efficient.

 XML transformations
It has been shown that the more optimization people do to the XSLT engine, the
more visible that the parsing becomes a bottleneck. For that reason, we expect
that our hardware XML engine is a must-have for any high performance XSLT
transformation application or appliance.

 XML middleware applications
People implementing performance-critical business applications have always
faced the dilemma of choosing between DOM and SAX. The performance is the
single biggest reason XML encounters much resistance in middleware
applications. By making Web Services scalable and cost-effective at the same
time, XimpleWare’s technology fundamentally eliminates the toughest roadblocks
standing in XML’s way; in other words, with our technology, one can no longer
make excuses for not using XML.

 XML intermediaries/XML content switch/Traffic management
The primary functionality of XML intermediaries, such as XML firewalls, routers
and proxies, is to store and forward XML messages. It usually examines the
content of XML messages to determine (1) whether the message is valid and (2)
where to forward the message. Depending on the situation, it can also make
some changes to the message.

There are many reasons that make XimpleWare’s technology uniquely qualified
for XML intermediaries. The most obvious one is performance: XimpleWare’s
hardware XML parsing engine can keep up with a Gig-bit network. Equally
important is the fact that XimpleWare’s processing model eliminates the round-
trip penalties of de-serialization and serialization with other XML processing
models. Not picking apart an XML document also fully preserves the original
content and its authenticity—otherwise, security applications would be forced to
digitally re-sign the document. Finally, on-chip implementation of validation and

Confidential Page 8 6/9/2003

This document is specially prepared for Sun MicroSystem. 8

XPATH evaluation further enhances the processing capability of the XML
intermediary.

Summary
Performance and processing model are two tough and interwoven issues that prevent
people from unleashing the power of XML. By pioneering a new, general-purpose,
memory-efficient and hardware-accelerated XML processing model, XimpleWare
hopes to help smooth enterprises’ transition towards a more ubiquitous use of XML,
and along the way, we would like to make this world more efficient, and ultimately a
better place for everyone!

